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Driving trajectories in complex systems

Elbert E. N. Macau* and Celso Grebogi
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742

~Received 15 October 1998!

A new paradigm, which combines targeting type of control problem for chaotic systems with the techniques
used in system control theory, is proposed. This paradigm is used to rapidly change the evolution of a complex
system among desired behaviors. We point out how this paradigm can also be applied to nonlinear systems that
do not present the characteristics of a complex system.@S1063-651X~99!06404-1#
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I. INTRODUCTION

A complex system is any system that presents invol
behavior, and is hard to model by using the reductionist
proach of successive subdivision, searching for ‘‘elem
tary’’ constituents@1#. Regarding the system’s behavior, if
is a complex system, we might expect to find the followi
@2–5#: ~i! a behavior that is neither completely ordered a
predictable nor completely random and unpredictable;~ii ! its
evolution reveals patterns in which coherent structures
velop at various scales, but do not exhibit elementary in
connections;~iii ! the structures can show a hierarchical re
tionship, i.e., nontrivial structures over a wide range of sca
can appear. Nature provides plenty of examples of these
tems@1#, in fields as diverse as biology, chemistry, geolog
physics, and fluid mechanics. Some of the most freque
quoted examples of systems that exhibit apparent com
behavior are Rayleigh-Bernard convection@6#, Belousov-
Zhabotinsky reaction@7#, Arecchi’s optical experiment@8#,
neuron activity@9#, and fluidized beds@10#.

Usually, the features that are typical of a complex syst
appear in systems with many degrees of freedom@5#. This is
the case for all the systems previously cited. What happ
in general, is that for these systems we have a situa
where a large number of both attracting and unstable cha
sets coexist. As a result, we can have a rich and varied
namical behavior, where many competing behaviors can
ist. When the system is evolving in the neighborhood of
attracting periodic set, it will exhibit an ‘‘ordered’’ behavio
This behavior changes to an apparently ‘‘nonordered’’
havior when the system is evolving about the unstable s
Thereby, the attractors themselves are responsible for
appearance of coherent structures, while the specific cha
teristics of each individual attractor, combined with its loc
tion relatively to the unstable sets, are responsible for
appearance of a hierarchy of structures.

Although the double rotor is a low-dimensional syste
Ref. @5# showed that this system is a nice paradigm o
complex system, when it is subjected to random exter
noise. The complexity occurs because of both the large n
ber of coexisting periodic attractors and the complicated
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sin structures of the double rotor over a wide range of
rameter values. The unstable invariant chaotic sets
embedded in the fractal basin boundaries. With the excep
of small open neighborhoods about the periodic attract
the phase space is permeated by the fractal basin bound
the dimensions of which are very close to the dimension
the phase space. Though the trajectory can spend arbitr
long times in the neighborhood of one of the stable perio
behaviors, the external random noise applied to the sys
prevents the trajectories from settling permanently into a
one of them. Thus, this system presents the same behavi
was previously described for a complex system@5#.

Using the double rotor system as a paradigm of a comp
system, Ref.@5# showed how to use small amplitude fee
back control to influence and manipulate the behavior of
system such that its trajectories can be confined to the ne
borhood of any desired attracting state~ordered behavior!. In
fact, the strategy envisaged by these authors~a! uses the
natural evolution of the system that, because of the unst
chaotic sets in the boundaries, leads to trajectories that e
tually approach the neighborhood of any one of the attrac
sets, and then~b! employs a method of control to keep
trajectory around an attracting state despite the presenc
noise. Thus, according to~a!, starting from any initial condi-
tion, the system follows its natural evolution until it fall
near the selected attractor about which we want the trajec
to be stabilized. When this happens, the procedure~b! is
applied and the trajectory stays confined to the neighborh
of the desired attractor. This strategy works very well, b
the average time to go from a generic initial condition to t
desired attracting state can be forbiddingly long in practi
In the example presented by the authors, this time is typic
about a thousand iterations~periods!.

In this article, we introduce a control method that allow
us to rapidly change the dynamical behavior of the comp
system as wished. Using our method, the transport t
needed to go from one ordered state to another is subs
tially reduced. Furthermore, with this method, we can bo
keep the system in any one of its dynamical regimes as l
as one wishes, and switch rapidly among these regim
More than a control method, we are proposing a new pa
digm of system control. This paradigm combines the targ
ing type of control, used for chaotic systems@12#, with the
classical control system methods from the system con
theory. We demonstrate that this paradigm results in pow
ful strategies that can be used in situations that so far
4062 ©1999 The American Physical Society
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PRE 59 4063DRIVING TRAJECTORIES IN COMPLEX SYSTEMS
difficult or even impossible to be handled by using just o
of these methods alone.

To demonstrate our control strategy, we use as a parad
of a low dimensional complex system the damped kick
single rotor with noise. The damped kicked single rotor w
introduced by Zaslavskii@11#, and it is also a very nice para
digm of a complex system if one adds noise, as was dem
strated by Feudel and Grebogi@13#, besides the fact that i
has a dimension that is smaller than the double rotor and
a result, it is more easily treatable.

This paper is organized as follows. In the next section
review the single rotor with noise. In Sec. III, we introdu
our control method, and present the results from upon us
it. In Sec. IV, we discuss its advantages and give the con
sions.

II. SINGLE ROTOR WITH NOISE

The kicked singled rotor describes the time evolution o
mechanical pendulum that is being kicked at timesnT, n
51,2, . . . , with a constant forcef 0 . From the differential
equation of this mechanical system one can derive a m
which is related to the state of the system just after e
successive kick@14#:

xk115xk1yk~mod 2p! ~1!

yk115~12n!yk1 f 0 sin~xk1yk!,

wherex corresponds to the phase andy to the angular veloc-
ity. f 0 is the force parameter, andn is the damping param
eter, measuring the energy dissipation of the system.
parametern varies between 0, for a Hamiltonian situatio
with no damping, and 1, in the case of a very strong dam
ing. The dynamics lies on the cylinder@0,2p)XR. In the
very strong damping (n51) limit, the system reduces to
one-dimensional circle map with a zero rotation number, a
it exhibits the Feigenbaum scenario to chaos@14#. The dy-
namics lies on the circle@0,2p).

In the Hamiltonian case~no damping,n50), we have the
area-preserving standard map, which was studied by C
ikov @15# and by many other authors@16–19#. It has stable
and unstable periodic orbits, Kolmogorov-Arnol’d-Mos
~KAM ! surfaces, and chaotic regions. Depending on the n
linear parameterf 0 , the regions of regular motion and th
regions of chaotic motion are complexly interwoven. As t
second equation of the map is also taken to be modulop,
the map of the cylinder reduces now to the map of the to
@0,2p)3@0,2p) to itself. As a consequence, each of the p
riodic orbits represents, in fact, a family of overlapping p
riodic orbits in which the velocityy differs by integer mul-
tiples of 2p. Because of the modulo 2p, all periodic orbits
of a same family are located at the same location on
thorus.

If we now consider the Hamiltonian case but introduce
very small amount of dissipation (n value close to zero!, the
symmetry iny is broken, and the motion again takes place
the cylinder @0,2p)3R. The periodic orbits become sink
and the chaotic Hamiltonian sets become unstable cha
sets embedded in the basin boundaries separating the va
sinks. The chaotic motion is hence replaced by long cha
transients that occur before the trajectory is eventu
e
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asymptotic to one of the sinks@20#. Furthermore, the dissi
pation leads to a separation of the overlapping periodic
bits, that belong to a given family, with increasing modulo
the velocities on the cylinder. However, there is a bound
cylinder which contains all of the attractors@20#. This cylin-
der is given as@0,2p)3@2ymax,ymax#, whereymax5 f 0 /n,
and all trajectories are eventually trapped inside this reg
@20#. Consequently, for values ofn close to zero, there is a
large, but finite, number of coexisting periodic orbits of i
creasing period. Figure 1 is a picture in the space of ini
conditions showing the basins of attraction for all attract
of period one to five. The periodicity of the attractors in t
picture is distinguished by colors, while the locations of t
attracting periodic orbits is identified by special charact
that are mentioned in the figure caption.

Figure 2 shows a typical basin of attraction for a period
attracting orbit. The black points are attracted to the spec
attractor. The particular picture shows the basin of attract
for a fixed point aty56p. The basins of attraction hav
fractal boundaries. Feudelet al. @20# calculated theuncer-
tainty exponent(a), which measures the sensitivity of th
final state to small changes in the initial conditions. Th
exponent is typically related to the box counting dimensiod
of the basin boundary bya5D2d, whereD is the dimen-
sion of the state space. For dampingn50.05, the result is
a50.006 41, which impliesd51.993 59; forn50.02, the
result isa50.001, andd51.999. This means that the dimen
sion of the basin boundaries is nearly the dimension of
state space, and they are organized in a complexly inter
ven structure, with chaotic saddles embedded in these b
boundaries@21#. Furthermore, extremely small changes
the initial conditions may shift a trajectory from one basin
another, which means that the system has high sensitivit
the final state. Thus, which attractor is eventually reached
a trajectory of the system depends strongly on the ini
conditions. This phenomenon is called multistability@13#. In
this scenario, typical trajectories, starting with arbitrary in

FIG. 1. Basin of attraction for the single rotor with noise. A
terisk indicates the position of attracting period-one points,3 the
position of attracting period-two orbits, and o the position of attra
ing period-three orbits. This picture is for the following paramete
f 054.0 andn50.02. All quantities plotted are dimensionless.
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4064 PRE 59ELBERT E. N. MACAU AND CELSO GREBOGI
tial conditions, experience periods of long chaotic transie
before approaching one of the periodic attractors.

Consider now this previously described scenario, bu
the presence of a small amplitude noise. Feudelet al. @20#
showed that in this situation, called thesingle rotor with
noise, the system can be characterized as a complex sys
@1#, regardless of the fact that it is a system of low~just two!!
dimensions. In fact, the noise may prevent the trajecto
from settling into any of the stable periodic behaviors. T
trajectory may come close to one of the periodic attracto
and remain in its neighborhood for some time. During t
period, the trajectory’s behavior is governed by the perio
attractor and it is, as a consequence, ordered. However,
ordered behavior just persists for a while, because noise
eventually move the trajectory out of this ‘‘metastable’’ sta
into the fractal boundary region. In the neighborhood of fra
tal basin boundaries, the trajectory’s behavior is governed
the unstable invariant chaotic sets that are embedded th
As a consequence, the trajectory experiences a chaotic
sient behavior for some time, until it approaches the sam
another periodic attractor. The period of time that the traj
tory is in the fractal boundaries corresponds to the traje
ry’s ‘‘random’’ behavior. Therefore, in a single rotor wit
noise, a typical trajectory alternates between intervals of r
dom or chaotic motion and intervals of nearly periodic b
havior. Figure 3 shows this behavior for a typical trajecto
Such behavior, that stresses the fact that the system is ne
completely ordered and predictable nor completely rand
and unpredictable, has also been observed experimenta
Rayleigh-Benard convection@6#, in coupled laser system
@8#, and in fluidized beds@10#. In the figure, we also see tha
the trajectory visits the neighborhoods of different attract
in a ‘‘random’’ way. It is not possible to devise, for exampl
an empirical rule that allows one to forecast the sequenc
attractors that will be visited by the noisy trajectory from t
knowledge of the attractors previously visited. In the ne
section, we show how it is possible to drive trajectories
this complex system so that it reaches a desired behavio
the shortest possible time.

FIG. 2. Enlargement of the basin of attraction for a period o
attracting orbit. Points located inside the region@1,5#3@34,44# that
go to this period one attracting orbit are plotted. All quantities pl
ted are dimensionless.
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III. DRIVING TRAJECTORIES

Recently, Ref.@5# showed that for a complex system th
unstable chaotic sets in the basin boundaries provide the
essary sensitivity and flexibility to drive the system dyna
ics toward a specific ‘‘ordered’’ behavior using small pertu
bations. By ‘‘ordered’’ behavior we mean the stabilization
one of the metastable attracting sets of the system@5#. Once
a trajectory enters one of these open neighborhoods, it
ecutes an almost periodic~‘‘ordered’’! motion until the noise
takes the trajectory back to the basin boundary region.
method proposed by the authors in Ref.@5# leaves the system
evolving by itself, until it comes close to the desired me
stable state. When that happens, a judiciously chosen pe
bation is applied so that the system is stabilized about
desired neighborhood of the metastable attracting set.
feedback perturbation is applied as soon as the sys
reaches a neighborhood of the desired metastable state
method works as follows@5#: Let us consider the single roto
with noise described by

xn115F~xn!1d5F̃~xn!, ~2!

in which d noise uniformly distributed is added to the syste
at each iteration. For simplicity, we assume that the me
stable state to be stabilized is a fixed pointx* . We can lin-
earize the system in the neighborhood of this point as

F~x* 1e!5x* 1DF~x* !* e1d, ~3!

where DF(x* ) is the derivative of the mapF at x* . The
eigenvalues toDF(x* ) are inside the unit circle, sincex* is
stable without noise. Suppose that on thei th iterate, the tra-
jectory lands in a neighborhood of this fixed point, so th
xi5x* 1e. Without control, the next point will bexi 11
5F(xi)1d. Assuming that the linearization holds approx

e

-

FIG. 3. ~a! They variable, which represents the angular veloc
of the noisy kicked single rotor, vs the iteration numberk for a
typical noisy trajectory.~b! The same typical noisy trajectory plot
ted in the phase space. In both graphs, all quantities plotted
dimensionless.
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PRE 59 4065DRIVING TRAJECTORIES IN COMPLEX SYSTEMS
mately aboutx* , the fixed point can be stabilized by th
addition of a controlling term2DF(x* )(xi2x* ), so that
the next point is now

x̂i 115F~xi !1d2DF~x* !~xi2x* !. ~4!

Since we want to achieve control using only small pertur
tions, the termuDF(x* )(xi2x* )u is scaled, when necessar
so that it does not exceed some predetermined upper b
previously specified. Note that the effect of this control la
is to impose a superstable condition on the fixed pointx* .

This method works very well in stabilizing trajectories
the neighborhood of periodic attractors. Moreover, t
method @5#, which combines the ability of the system
reach a desired metastable state and the method to hol
system’s evolution about that particular state, relies on
ability of a complex system to access many different sta
and one’s ability to modify the system’s complex behav
by using only small perturbations.

The transport timeinvolved in the process of changin
the complex systems’ evolution can be, typically, exc
sively long @5#. That happens because the method relies
the transport time until the system’s evolution brings t
trajectory close to the desired state before the stabiliza
strategy can be applied. Thus, for example, if the goal is
change the system’s evolution from the metastableA to the
metastableB, the orbit that accomplishes that experienc
arbitrarily long chaotic transient in going fromA to B. It may
happen that, before reachingB, the trajectory might evolve
about the periodic attractorC, until the moment that noise
sends the trajectory back to the fractal basin bound
There, the trajectory is again a chaotic transient. This kind
behavior may recur many times, until eventually the traj
tory finally approaches the desired periodic attractorB, so
that the stabilizing strategy of Ref.@5# can now be used to
keep the trajectory evolving about the desired state. In p
tical situations, such transport time is prohibitively long.

We find and show in this paper that this transport time c
be substantially reduced. As the transition between two
ferent metastable states implies a trajectory that undergo
chaotic transient evolution in between the states, we de
the idea of using a targeting method for the complex dyna
ics. The targeting method exploits the inherent exponen
sensitivity of the chaotic time evolution to tiny perturbatio
and our ability to choose the right perturbations to dir
trajectories to some desired accessible state in the sho
possible time@22#. To apply this method, suppose that w
have two pointsS andT in the phase space of our comple
system, both of them in the fractal basin boundary. Cons
a small regionr S about the source pointS, and another smal
regionr T about the target pointT. The objective is to find a
point pS in r S so that it belongs to a trajectory that goes fro
pS to a pointpT in r T . To find pS , the regionr S is iterated
in the forward direction, while the regionr T is iterated in the
backward direction, until these iterated regions intersect e
other at pI , in the phase space. When the intersection
found, there is a trajectory that goes from regionr S to region
r T through the intersectionpI . The pointpS is then used to
determine the value of the perturbation that must be app
to the system to bring it topS . As the system is inpS , it
evolves following its own dynamics to getpT in the shortest
-
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possible time@22#. Then, another perturbation can be used
necessary, to bring the system frompT to the target pointT.

We now argue that this targeting method, with two mo
fications, can be straightforwardly applied to complex s
tems. The first modification results from the way that o
noisy system evolves and the procedure to find the inter
tion between the forward and backward dynamics of the
gionsr s andr t , respectively. Consider that we are at a giv
point xi . The next pointxi 11 is obtained through the follow-
ing procedure. We iterate once the pointxi under the map,
but for n different noise realizations, using for each noi
realization the samexi as the initial condition. Let us cal
xr( i 11,k) the point obtained when the map is iterated us
the kth noise realization, so that

xr~ i 11,k!5F̃~xi !. ~5!

The result of this procedure is the sequencexr( i 11,1),xr( i
11,2), . . . ,xr( i 11,n). Then, xi 11 is calculated from this
sequence of points by taking the average:

xi 115
xr~ i ,1!1xr~ i ,2!1•••1xr~ i ,n!

n
. ~6!

This procedure deals with the additive noise in the sin
rotor. It is a filter algorithm to reduce the effect of this nois

The other modification introduced related to the way t
targeting procedure is applied in order for the phase sp
trajectory to go from the pointpS , near the source pointS, to
the pointpT , near the targeting pointT. If we were dealing
with a simpler chaotic system, starting fromS, the only step
that is necessary to get to the targeting pointT would be the
application of a small perturbation inS to move the state of
the system to the pointpS . Then, the natural chaotic evolu
tion of the system would guide the trajectory to the neig
borhood of the targeting pointpT nearT. For our complex
system, the situation is different. If we applied the same p
cedure, starting from the pointS, it is likely that the dynam-
ics would not take the trajectory to the targeting point. Th
would happen because of the additive noise that exists in
system. The noise, in combination with the determinis
chaotic behavior of the map, implies a trajectory that is like
to deviate from the solely deterministic trajectory.

To deal with this more complicated behavior, we use
points from the deterministic trajectory obtained from t
targeting method, but ‘‘corrected’’ according to the follow
ing procedure. Suppose that, starting fromS, the determinis-
tic trajectory is a sequence ofm points in the phase spac
(xs1

,xs2
, . . . ,xsm

), wherexs1
is the perturbed pointpS , and

xsm
is the pointpT . Starting frompS , the ‘‘correctional’’

procedure consists of the application of successive pertu
tions to compensate for the natural deviation of the~noisy!
system trajectory from the deterministic trajectory. Thus,
example, if at iterationj, the trajectory the system arrives
positionxj that is different fromxsj

, a perturbation is calcu-

lated and applied to the system to take the trajectory fromxj
to the pointxsj

. Note that for our system this perturbation
of the same order as the noise added at each iteration o
map @see Eq.~1!#.

In Figs. 4 and 5 we show the application of our procedu
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Both the source pointS and the targeting pointT are in the
fractal basin boundary. In Fig. 4, starting from the sou
point, we leave the system evolving by itself, until it com
close to the targeting point. After 15 118 iterations, the t
jectory visits a small region about the targetT. This transport
time can be substantially reduced by applying our targe
procedure. Our method, for this case, permits the target t
attained in 30 iterations, as can be seen in Fig. 5. Thus,
achieve an improvement of three orders of magnitude in
ducing the transport time, which is a very significant res
It must be stressed that this result is a consequence o

FIG. 4. ~a! Phase space plot of a trajectory starting at the sou
point S, and after letting the system to evolve by itself; it eventua
reaches the targeting pointT after a large number of iterations.~b!
This picture shows they component of a trajectory in phase spa
going from the source pointS to the target pointT. It depicts then
the angular velocityy of the noisy kicked single rotor as a functio
of the iteration numberk. In both graphs, all quantities plotted a
dimensionless.

FIG. 5. By exploring the chaotic behavior of the system, o
targeting procedure rapidly steers the trajectory fromS to T. The
asterisks that appear in the picture represent a trajectory obtaine
applying our targeting procedure to drive the system from the p
S to the pointT. ~a! Phase space plot.~b! The y component of this
trajectory as a function ofk. In both graphs, all quantities plotte
are dimensionless.
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ability of the complex system to reach many different stat
combined with its sensitivity to small perturbations due
the unstable chaotic set embedded in the random structu

The procedure just described works for points located
the random structure. The targeting methods, ours and
previous one@22#, work because of the inherent exponent
sensitivity of the chaotic time evolution to perturbation
Therefore, the source pointS and the targeting pointT must
both be in the same chaotic invariant set. This is the case
points S and T in Figs. 4 and 5. However, if the system
evolving in a metastable regime, where the trajectory can
trapped for an arbitrarily long time, the condition of bein
located in the same random structure is not satisfied. Furt
more, the time evolution is ‘‘ordered,’’ and the inherent e
ponential sensitivity to perturbations does not apply. Th
we show next that if the objective is to bring the trajecto
from one metastable state to any other metastable state,
the trajectory must be guided to the random chaotic reg
where the targeting method is applied. The idea then is~i! to
remove the trajectory from the metastable region to the s
rounding random structure,~ii ! apply the targeting procedur
in the random structure to bring it to the neighborhood of
desired metastable state and then finally~iii ! to bring it to the
desired targeting point inside the metastable state. We
complish this guidance task inside a metastable state@~i! and
~iii !# by using a traditional technique from the system cont
theory and outside the metastable states~in the chaotic in-
variant region! ~ii ! using the targeting procedure just d
scribed. Thereby, our method of targeting different states
complex system is a combination of a modified~to account
for the effect of noise! chaotic targeting with the traditiona
control method.

For the traditional part of the targeting procedure, we u
the discrete linear quadratic regulator~DLQR! @23#. We
consider, for simplicity, the system evolving in a metasta
state about, say, a fixed pointx* . Linearizing the system
about this point gives the following equation:

xk115Axk , ~7!

whereA is DF(x* ). To change the state of the system, w
introduce an input term into Eq.~7! as

xk115Axk1Buk , ~8!

whereuk is the vector of inputs andB is a constant matrix
that states how the inputs influence the state of the sys
Our objective is to pickuk so that the ‘‘cost function’’

J5 1
2 (

k50,N
~xk

t Q1xk1uk
t Q2uk! ~9!

is minimized.Q1 andQ2 are symmetric weighting matrice
to be selected, as we show next, based on the relative im
tance of the various states and controls. A particular wei
is almost always selected for the control (uQ2uÞ0), to avoid
large components in the control gains. TheQ’s must also be
non-negative.

We solve this control problem by minimizing Eq.~9! sub-
jected to the constraint Eq.~8!,

2xk111Axk1Buk50, k50,1, . . . ,N. ~10!
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PRE 59 4067DRIVING TRAJECTORIES IN COMPLEX SYSTEMS
We use the method of Lagrange multipliers@24# to solve the
problem by introducing one Lagrange multiplier vectorlk11
for each value ofk. The minimization leads to the following
equations:

uk
t Q21lk11

t B50, ~11!

2xk111Axk1Buk50, ~12!

lk5Atlk111Q1xk . ~13!

Combining Eqs.~10!, ~11!, and~13! gives us a set of couple
difference equations defining the optimal solution ofxk and
lk and henceuk , provided the initial~or final! conditions are
known. The initial conditionsx0 must be given; however
usually l0 is not known, and we need the endpointxn to
establish the final condition. From Eq.~9!, we see thatuN is
zero for the minimumJ sinceuN has no effect onxN @see Eq.
~10!#. Thus, Eq.~11! suggests thatlN1150, and Eq.~13!
thus shows that a suitable condition is

lN5Q1xN . ~14!

The solution to the optimal control problem is now com
pletely specified. It consists of the two difference equatio
Eqs.~10! and~13!, with uk given by Eq.~11!, the final con-
dition on l given by Eq.~14!, and the initial conditionx0
assumed to be given in the statement of the problem. P
lems like this, where a set of ordinary differential equatio
or difference equations is required to satisfy boundary c
ditions at more than one value of the independent varia
are calledtwo point boundary value problems. The solution
to this two point boundary-value problem is not so easy. O
way to solve this problem is proposed by Bryson and
@25#, in which it is assumed that

lk5Skxk , ~15!

whereSk is an arbitrary matrix. Introducing this assumptio
into Eq. ~11!, and after some work@25#, we get

Sk5AtMk11A1Q1 , ~16!

and

uk52Kkxk , ~17!

where

Mk115Sk112Sk11B~Q21BtSk11B!21BtSk11 , ~18!

and

Kk5~Q21BtSk11B!21BtSk11A. ~19!

In these equations, the boundary condition on the recur
relationship forSk is obtained from Eqs.~14! and~15!; thus

SN5Q1 . ~20!

Kk is the desired time-varying feedback gain. Note that
gain Kk changes for each step but can be precomputed
stored for later use as long as the lengthN of the problem is
known. Note that no knowledge of the initial statex0 is
required for computation of the control gainKk , and the Eq.
,

b-
s
-

e,

e
o

ve

e
nd

~16!, which givesSk , must be solved backward, with th
initial condition that appears in Eq.~20!, plus the condition
KN50.

This closed loop control strategy, when applied to a line
system, has the effect of bringing this system from an a
trary initial state to the zero state as quickly as possib
After that, the system is held in the zero state, even in
presence of noise. If the desired final state is insteadxf , we
shift the origin. Letuf be the constant input signal to whic
xf corresponds to the steady-state output. Then,uf andxf are
related by

xf5Axf1Buf . ~21!

We introduce now the state space variable

x̂k5xk2xf . ~22!

Then, with the aid of Eq.~21!, it follows from Eq.~8! that x̂k
satisfies the equation

x̂k115Ax̂k1Bûk , ~23!

where

ûk5uk2uf . ~24!

This shows that the problem of bringing the system~8! from
an arbitrary initial statex0 to the final statexf is equivalent to
bringing the system~8! from the initial statex02xf to the
equilibrium statexk50.

In Figs. 6 and 7 we show the result of using the DLQ
method on the complex system. The system is initialy evo
ing in a metastable state about a fixed point that exists w
there is no additive noise. This situation is represented in
phase space plot, Fig. 6, by dots. Our initial goal is to st
the trajectory, say fromS to a neighborhood of the targetin
point T, as indicated in Fig. 6. Both pointsSandT belongs to
the same metastable region, butT is located near the sur
rounding random structure. FromT, the trajectory can be
guided to evolve in the random structure by using a sm
perturbation. Using the position ofT as reference, and lin
earizing the system in the neighborhood of the fixed po
we calculate the feedback gain that should be used so tha
DLQR can stabilize the trajectory evolution aboutT. When
the trajectory visits the point that is indicated in the figur
by S, the DLQR controller is activated, using the previous
calculated feedback gain. The effect of applying this contr
ler can be seen in Fig. 6, where the controlled trajectory
represented by circles. The controller changes the syste
dynamics so that, after a transient, it starts to evolve abouT.
In Fig. 7, we represent the distance of the trajectory from
targeting as a function ofk, starting from the instant when
the DLQR is applied. We can see in this figure that t
controller brings the trajectory very near the targeting po
T, as desired. However, after evolving for some time ab
T, the trajectory moves progressively away from it. This ha
pens because of the combined effects due to nonlinearity
noise. This progressive deviation from the desired state
more intense as the distance of the desired final state f
the point that was used for the linearization increases.
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The behavior of the system under the action of the DLQ
however, is precisely what we need to take the system e
lution out of a metastable state into the random structure
order to drive the system’s trajectory toward another spec
metastable state. Thus, suppose the system is in a metas
state and we wish to stir its dynamics out of this state t
random structure. We first identify in the state space
point xf inside the metastable region, the region where
system is currently evolving, but anxf very near the random
structure. Then, we apply the DLQR, consideringxf as the
desired final state. When the trajectory is in the pointxf n

,

which is located close enough toxf , we cease to use th

FIG. 6. The effect of using the DLQR. The system was evolv
in a metastable state, represented by dots in the phase space.
it is in the positionS, represented by a1 in the graph, the DLQR
was applied. The effect of using this controller is shown with circ
in the figure. The control changes the system dynamics so tha
system passes to evolve about the targeting pointT, represented in
the graph by an asterisk. All quantities plotted are dimensionle

FIG. 7. This plot shows the distance of the DLQR controll
trajectory from the target as function ofk. When the controlled
trajectory comes near enough to the target, the application of DL
can be stopped and a small perturbation is enough to send the
jectory to the random structure. All quantities plotted are dim
sionless.
,
o-
in
c
ble

a
e
e

DLQR and immediately apply a small perturbation to dri
the system toxf . Then, another perturbation takes the sy
tem fromxf to the neighboring random structure as desir
In fact, it is sufficient to give a single perturbation to take t
system fromxf n

to the random structure and, thus, bypass

the pointxf altogether.
Putting all these ideas together, imagine now that our g

is to stir the system from a state in the metastable regimA
to a state in the metastable regimeB, as shown in Fig. 8.
Using the combined targeting procedure, we first calcula
trajectory in the state space that takes the pointxsa near the
metastable regimeA to a pointxtb near the metastable re
gime B. xsa is chosen so that there is a pointxf a insideA so
that a small perturbation is enough to drive the system fr
xf a to xsa . Also, xtb is chosen in the random structure so th
a small perturbation is enough to drive the system fromxtb to
a point xob in B. Starting from a point inA, say, the point
x0 f a , the DLQR procedure drives the trajectory insideA to a
point xn f a nearxf a . At xn f a a small perturbation is applied
and the system instantaneously moves to the statexf a . An-
other perturbation is applied, and the system instantaneo
moves to the statexsa . Our modified chaotic targeting pro
cedure is then used to stir the system toxtb . Another small
perturbation instantaneously drives the system to the p
xob , where the procedure of Ref.@5# stabilizes the system in
the metastable regimeB.

Relevant questions about our procedure are~1! how
should the pointsxf a andxsa , as shown in Fig. 8, be chosen
and ~2! what is the small perturbation that can move t
system from one point to the other? This selection is m
by using a procedure@26# used to find an acessible poin
@24#. The metastable state evolves about a periodic attra

hen

s
he

.

R
ra-
-

FIG. 8. Schematic representation of our complete targeting p
cedure for complex systems. The system is initially evolving in
metastable regimeA. Our goal is to steer it to metastable regimeB.
Starting from a generic pointx0 f a in A, the DLQR procedure drives
the trajectory insideA to a point xn f a near xf a . In xn f a a small
perturbation is applied, and the system moves to the statexf a .
Another perturbation is applied, and the system moves to the s
xsa . Our modified chaotic targeting procedure is then used to
the system toxtb . Another small perturbation drives the system
the pointxob , where the procedure of Ref.@5# stabilizes the system
in the metastable regimeB.
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for the deterministic dynamics. The basin boundary of t
periodic attractor permeates most of the state space, ex
for a small open neighborhood about the periodic attrac
as can be seen in Fig. 2. Then, points in this open neigh
hood remains close to the periodic attractor, while points t
are located outside undergo a chaotic transient, and eve
ally go to the neighborhood of other periodic attractors.
find xf a andxsa , we first find a pointxma between both tha
is on the boundary but acessible from the basin of the p
odic attractor. A point on the boundary is accessible if it
possible to connect this point to the attractor using a curv
finite length. Consider two pointsPi , and Po , one located
inside this open neighborhood region about the periodic
tractor, and the other outside, respectively. The pointPi ap-
proaches the attractor asymptotically while the pointPo does
not. Take the middle point betweenPi and Po and call it
Pm . Check then whetherPm is an inside or outside point. I
Pm is inside, we discardPi and takePm as the newPi .
Otherwise, we discardPo and takePm as the newPo . By
repeating this procedure we can get two pointsPi and Po
that are as near to each other as we wish, thus zooming i
an accessible point. We then rename the resultingPi asxf a ,
andPo asxsa . In the presence of the additive noise, the sa
procedure can be used, with Eq.~6! being considered in-
stead.

In Figs. 9 and 10 we show the results of applying o
combined method to change the system evolution at
between desired metastable states. We follow a typical n
trajectory for more than 1000 iterations. Then, we apply
combined targeting procedure to drive the trajectory
evolve about a periodic attractor. The Ref.@5# method is then
used and the trajectory is stabilized in this metastable
gime. After some iterations, the DLQR is applied, followe

FIG. 9. Controlling the evolution of the complex system using
combination of our modified chaotic targeting method with stand
targeting from control theory. The angular velocity of the noi
kicked single rotor as a function ofk is plotted. The pointT indi-
cates the position where we start to control the system. Using
procedure, we drive the system through the metastable states
are indicated in the graph. The metastable regimes are identif
by small letters, while the point where the targeting procedure
applied for the first time is indicated by the letterT. All quantities
plotted are dimensionless.
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by a targeting procedure, and the trajectory is stirred to
neighborhood of another metastable state. The same pr
dure is again applied to move the system now to a period
metastable state, where it is stabilized. After while, the p
cedure is applied to return the system to a previous m
stable regime. The perturbations that is applied during
whole manipulation is less than 0.1. We note the extrem
short transient in between the various controlled metasta
states.

IV. CONCLUSION

The control method discussed in this article combin
techniques used in system control theory with the targe
type of control for chaotic systems. The result of this co
bination is a method that can be used to rapidly change
time evolution of a complex system as desired. Howev
more than just a control method, what we are proposing
new paradigm for manipulating and controlling the system
dynamics. It is a combination of chaos control, control s
tem strategies using small perturbation, and the standard
trol approach.

The efficacy of this proposed paradigm is demonstra
by using it in a complex system. A complex system, with
complicated and intricate dynamics, intrinsic sensitivity, a
coexistence of states with different behavior, provides
ideal scenario to be explored by our paradigm. However,
expect that it can be used with the same efficacy in the c
trol of other nonlinear systems where complicated dynam
occur. For these systems, a mechanism that switches the
namics between chaos and regular motion can be use
provide the perfect scenario for the use of our paradigm.

This work was supported by the CNPq~Brazilian Agency
for Research and Technological Development! and
NSF/CNPq joint research grant. E. M. thanks Drs. Le
Poon and Ricardo Viana for helpful discussions.
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FIG. 10. Phase space plot of the evolution of the complex s
tem using a combination of our modified chaotic targeting meth
with standard targeting from control theory. The metastable st
where the system is stabilized are indicated in the plot. All qua
ties plotted are dimensionless.
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