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Driving trajectories in complex systems
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A new paradigm, which combines targeting type of control problem for chaotic systems with the techniques
used in system control theory, is proposed. This paradigm is used to rapidly change the evolution of a complex
system among desired behaviors. We point out how this paradigm can also be applied to nonlinear systems that
do not present the characteristics of a complex sysf&t063-651X99)06404-1

PACS numbds): 05.45-a

[. INTRODUCTION sin structures of the double rotor over a wide range of pa-
rameter values. The unstable invariant chaotic sets are
A complex system is any system that presents involvegmbedded in the fractal basin boundaries. With the exception
behavior, and is hard to model by using the reductionist apef small open neighborhoods about the periodic attractors,
proach of successive subdivision, searching for “elementhe phase space is permeated by the fractal basin boundaries
tary” constituentd 1]. Regarding the system’s behavior, if it the dimensions of which are very close to the dimension of
is a complex system, we might expect to find the followingthe phase space. Though the trajectory can spend arbitrarily
[2-5]: (i) a behavior that is neither completely ordered andiong times in the neighborhood of one of the stable periodic
predictable nor completely random and unpredictafiigjts  behaviors, the external random noise applied to the system
evolution reveals patterns in which coherent structures deprevents the trajectories from settling permanently into any
velop at various scales, but do not exhibit elementary interone of them. Thus, this system presents the same behavior as
connections(iii ) the structures can show a hierarchical rela-was previously described for a complex systéh
tionship, i.e., nontrivial structures over a wide range of scales Using the double rotor system as a paradigm of a complex
can appear. Nature provides plenty of examples of these sysystem, Ref[5] showed how to use small amplitude feed-
tems[1], in fields as diverse as biology, chemistry, geology,back control to influence and manipulate the behavior of the
physics, and fluid mechanics. Some of the most frequentlgystem such that its trajectories can be confined to the neigh-
quoted examples of systems that exhibit apparent complefsorhood of any desired attracting stéedered behavior In
behavior are Rayleigh-Bernard convectipB], Belousov- fact, the strategy envisaged by these auth@jsuses the
Zhabotinsky reactioi7], Arecchi’'s optical experimeni8], natural evolution of the system that, because of the unstable
neuron activity[9], and fluidized bed§10]. chaotic sets in the boundaries, leads to trajectories that even-
Usually, the features that are typical of a complex systentually approach the neighborhood of any one of the attracting
appear in systems with many degrees of freeddinThisis  sets, and therib) employs a method of control to keep a
the case for all the systems previously cited. What happenssajectory around an attracting state despite the presence of
in general, is that for these systems we have a situationoise. Thus, according @), starting from any initial condi-
where a large number of both attracting and unstable chaotigon, the system follows its natural evolution until it falls
sets coexist. As a result, we can have a rich and varied dysear the selected attractor about which we want the trajectory
namical behavior, where many competing behaviors can exo be stabilized. When this happens, the procedbyeis
ist. When the system is evolving in the neighborhood of armapplied and the trajectory stays confined to the neighborhood
attracting periodic set, it will exhibit an “ordered” behavior. of the desired attractor. This strategy works very well, but
This behavior changes to an apparently “nonordered” bethe average time to go from a generic initial condition to the
havior when the system is evolving about the unstable setsglesired attracting state can be forbiddingly long in practice.
Thereby, the attractors themselves are responsible for the the example presented by the authors, this time is typically
appearance of coherent structures, while the specific charaabout a thousand iteratiorgperiods.
teristics of each individual attractor, combined with its loca- In this article, we introduce a control method that allows
tion relatively to the unstable sets, are responsible for thes to rapidly change the dynamical behavior of the complex
appearance of a hierarchy of structures. system as wished. Using our method, the transport time
Although the double rotor is a low-dimensional system,needed to go from one ordered state to another is substan-
Ref. [5] showed that this system is a nice paradigm of atially reduced. Furthermore, with this method, we can both
complex system, when it is subjected to random externakeep the system in any one of its dynamical regimes as long
noise. The complexity occurs because of both the large numas one wishes, and switch rapidly among these regimes.
ber of coexisting periodic attractors and the complicated baMore than a control method, we are proposing a new para-
digm of system control. This paradigm combines the target-
ing type of control, used for chaotic systefri®], with the
*Also at the Laboratdo de Integragao e Testes, Instituto Nacio- classical control system methods from the system control
nal de Pesquisas EspaciaitNPE), Brazil. Electronic address: theory. We demonstrate that this paradigm results in power-
emacau@@glue.umd.edu or elbert@@lit.inpe.br. ful strategies that can be used in situations that so far are
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difficult or even impossible to be handled by using just one
of these methods alone.

To demonstrate our control strategy, we use as a paradigr
of a low dimensional complex system the damped kicked
single rotor with noise. The damped kicked single rotor was
introduced by Zaslavskiil1], and it is also a very nice para-
digm of a complex system if one adds noise, as was demor
strated by Feudel and Grebddi3], besides the fact that it
has a dimension that is smaller than the double rotor and, a*
a result, it is more easily treatable.

This paper is organized as follows. In the next section we
review the single rotor with noise. In Sec. lll, we introduce
our control method, and present the results from upon using
it. In Sec. IV, we discuss its advantages and give the conclu
sions.

II. SINGLE ROTOR WITH NOISE

The kicked singled rotor describes the time evolution of a
mechanical pendulum that is being kicked at tinme§ n terisk indicates the position of attracting period-one poiitsthe

=12,..., with a constant forcef,. From the differential osition of attracting period-two orbits, and o the position of attract-

e%gartllo.n Ofl th'(Sj mecr?amcal Snyt(;m one can dem]{e a maE’\g period-three orbits. This picture is for the following parameters:
which is related to the state of the system just aiter eaCIf’0=4.0 andv=0.02. All quantities plotted are dimensionless.

successive kick14]:

FIG. 1. Basin of attraction for the single rotor with noise. As-

Xis 1= X+ Yi(mod 277) (1)  asymptotic to one of the sink20]. Furthermore, the dissi-
pation leads to a separation of the overlapping periodic or-
Vir 1= (1= )y + o sin(x + i), bits, that belong to a given family, with increasing modulo of

the velocities on the cylinder. However, there is a bounded

wherex corresponds to the phase antb the angular veloc- cylinder which contains all of the attractdr20]. This cylin-
ity. fo is the force parameter, andis the damping param- der is given a$0,27) X[ = Ymax:Ymaxl» Whereymax=fo/v,
eter, measuring the energy dissipation of the system. Thand all trajectories are eventually trapped inside this region
parameterv varies between 0, for a Hamiltonian situation, [20]. Consequently, for values of close to zero, there is a
with no damping, and 1, in the case of a very strong damplarge, but finite, number of coexisting periodic orbits of in-
ing. The dynamics lies on the cylindg¢d,27)XR. In the creasing period. Figure 1 is a picture in the space of initial
very strong damping®=1) limit, the system reduces to a conditions showing the basins of attraction for all attractors
one-dimensional circle map with a zero rotation number, an@f period one to five. The periodicity of the attractors in the
it exhibits the Feigenbaum scenario to chdb4]. The dy-  picture is distinguished by colors, while the locations of the
namics lies on the circlg0,27). attracting periodic orbits is identified by special characters

In the Hamiltonian caséo dampingy=0), we have the that are mentioned in the figure caption.
area-preserving standard map, which was studied by Chir- Figure 2 shows a typical basin of attraction for a periodic
ikov [15] and by many other authof46—19. It has stable attracting orbit. The black points are attracted to the specific
and unstable periodic orbits, Kolmogorov-Arnol'd-Moser attractor. The particular picture shows the basin of attraction
(KAM) surfaces, and chaotic regions. Depending on the norfor a fixed point aty=6. The basins of attraction have
linear parametef, the regions of regular motion and the fractal boundaries. Feudet al. [20] calculated theuncer-
regions of chaotic motion are complexly interwoven. As thetainty exponen{«), which measures the sensitivity of the
second equation of the map is also taken to be modulp 2 final state to small changes in the initial conditions. This
the map of the cylinder reduces now to the map of the torugxponent is typically related to the box counting dimension
[0,27) X[0,27) to itself. As a consequence, each of the pe-of the basin boundary by=D —d, whereD is the dimen-
riodic orbits represents, in fact, a family of overlapping pe-sion of the state space. For damping 0.05, the result is
riodic orbits in which the velocity differs by integer mul-  «=0.006 41, which impliedd=1.99359; forr=0.02, the
tiples of 2. Because of the modulo72 all periodic orbits result isae=0.001, andd=1.999. This means that the dimen-
of a same family are located at the same location on thsion of the basin boundaries is nearly the dimension of the
thorus. state space, and they are organized in a complexly interwo-

If we now consider the Hamiltonian case but introduce aven structure, with chaotic saddles embedded in these basin
very small amount of dissipationv(value close to zeppthe  boundarieg21]. Furthermore, extremely small changes in
symmetry iny is broken, and the motion again takes place onthe initial conditions may shift a trajectory from one basin to
the cylinder[0,27) XR. The periodic orbits become sinks another, which means that the system has high sensitivity to
and the chaotic Hamiltonian sets become unstable chaotite final state. Thus, which attractor is eventually reached by
sets embedded in the basin boundaries separating the varioaistrajectory of the system depends strongly on the initial
sinks. The chaotic motion is hence replaced by long chaoticonditions. This phenomenon is called multistabilityg]. In
transients that occur before the trajectory is eventuallythis scenario, typical trajectories, starting with arbitrary ini-
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FIG. 2. Enlargement of the basin of attraction for a period one  FIG. 3. (8) They variable, which represents the angular velocity
attracting orbit. Points located inside the regjdn5| x[34,44 that ~ Of the noisy kicked single rotor, vs the iteration numbefor a

go to this period one attracting orbit are plotted. All quantities plot-typical noisy trajectory(b) The same typical noisy trajectory plot-
ted are dimensionless. ted in the phase space. In both graphs, all quantities plotted are

. . ) . ) dimensionless.
tial conditions, experience periods of long chaotic transients

before approaching one of the periodic attractors. lIl. DRIVING TRAJECTORIES
Consider now this previously described scenario, but in
the presence of a small amplitude noise. Fewdall. [20] Recently, Ref[5] showed that for a complex system the

showed that in this situation, called ttsingle rotor with  unstable chaotic sets in the basin boundaries provide the nec-
noise the system can be characterized as a complex systeassary sensitivity and flexibility to drive the system dynam-
[1], regardless of the fact that it is a system of IQust twa!) ics toward a specific “ordered” behavior using small pertur-
dimensions. In fact, the noise may prevent the trajectoriebations. By “ordered” behavior we mean the stabilization of
from settling into any of the stable periodic behaviors. Theone of the metastable attracting sets of the syg&mOnce
trajectory may come close to one of the periodic attractorsa trajectory enters one of these open neighborhoods, it ex-
and remain in its neighborhood for some time. During thisecutes an almost period{tordered”) motion until the noise
period, the trajectory’s behavior is governed by the periodidakes the trajectory back to the basin boundary region. The
attractor and it is, as a consequence, ordered. However, thisethod proposed by the authors in Héfl. leaves the system
ordered behavior just persists for a while, because noise wikvolving by itself, until it comes close to the desired meta-
eventually move the trajectory out of this “metastable” statestable state. When that happens, a judiciously chosen pertur-
into the fractal boundary region. In the neighborhood of frac-bation is applied so that the system is stabilized about the
tal basin boundaries, the trajectory’s behavior is governed bgesired neighborhood of the metastable attracting set. The
the unstable invariant chaotic sets that are embedded therfeedback perturbation is applied as soon as the system
As a consequence, the trajectory experiences a chaotic trareaches a neighborhood of the desired metastable state. The
sient behavior for some time, until it approaches the same amethod works as followg5]: Let us consider the single rotor
another periodic attractor. The period of time that the trajecwith noise described by

tory is in the fractal boundaries corresponds to the trajecto-
ry’s “random” behavior. Therefore, in a single rotor with
noise, a typical trajectory alternates between intervals of ran-
dom or chaotic motion and intervals of nearly periodic be-
havior. Figure 3 shows this behavior for a typical trajectory.in which & noise uniformly distributed is added to the system
Such behavior, that stresses the fact that the system is neithatr each iteration. For simplicity, we assume that the meta-
completely ordered and predictable nor completely randonstable state to be stabilized is a fixed poifit We can lin-
and unpredictable, has also been observed experimentally &arize the system in the neighborhood of this point as
Rayleigh-Benard convectiof6], in coupled laser systems
[8], and in fluidized bedgl1Q]. In the figure, we also see that
the trajectory visits the neighborhoods of different attractors
in a “random’ way. It is not possible to devise, for example,
an empirical rule that allows one to forecast the sequence ofhere DF(x*) is the derivative of the maj at x*. The
attractors that will be visited by the noisy trajectory from the eigenvalues t®F(x*) are inside the unit circle, sino€ is
knowledge of the attractors previously visited. In the nextstable without noise. Suppose that on ttieiterate, the tra-
section, we show how it is possible to drive trajectories ofiectory lands in a neighborhood of this fixed point, so that
this complex system so that it reaches a desired behavior i=x* +e. Without control, the next point will bex;, ;

the shortest possible time. =F(x;)+ 4. Assuming that the linearization holds approxi-

Xn+1=F(Xn) + 8=F(xy), )

F(x*+€e)=x*+DF(x*)* e+ 6, 3)
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mately aboutx*, the fixed point can be stabilized by the possible timg22]. Then, another perturbation can be used, if
addition of a controlling term—DF(x*)(x;—x*), so that necessary, to bring the system frgrp to the target poinT.

the next point is now We now argue that this targeting method, with two modi-
fications, can be straightforwardly applied to complex sys-
;(i+l=F(Xi)+ 5—DF(X*)(X;—X*). (4) tems. The first modification results from the way that our

noisy system evolves and the procedure to find the intersec-
Since we want to achieve control using only small perturbation between the forward and backward dynamics of the re-
tions, the tern{DF (x*)(x; —x*)| is scaled, when necessary, 910NSTs andr,, respectively. Consider that we are at a given
so that it does not exceed some predetermined upper bou@intx;. The next poink; . ; is obtained through the follow-
previously specified. Note that the effect of this control lawing procedure. We iterate once the poxatunder the map,
is to impose a superstable condition on the fixed peint but for n different noise realizations, using for each noise
This method works very well in Stab”izing trajectories in realization the same; as the initial condition. Let us call
the neighborhood of periodic attractors. Moreover, thisX:(i+1Kk) the point obtained when the map is iterated using
method[5], which combines the ability of the system to the kth noise realization, so that
reach a desired metastable state and the method to hold the _
system’s evolution about that particular state, relies on the X (i+1,K)=F(x). (5)
ability of a complex system to access many different states,
and one’s ability to modify the system’s complex behaviorThe result of this procedure is the sequerg@ + 1,1) X,(i
by using only small perturbations. +1,2),... x(i+1n). Then,x;,, is calculated from this
The transport timeinvolved in the process of changing sequence of points by taking the average:
the complex systems’ evolution can be, typically, exces-
sively long[5]. That happens because the method relies on X (1,1) +x,(i,2)+ - - - +%,(i,n)
the transport time until the system’s evolution brings the Xit1= n : ©
trajectory close to the desired state before the stabilization

strategy can be applied. Thus, for example, if the goal is torhis procedure deals with the additive noise in the single
change the system’s evolution from the metastable the  rotor. It is a filter algorithm to reduce the effect of this noise.
metastableB, the orbit that accomplishes that experiences The other modification introduced related to the way the
arbitrarily long chaotic transient in going froAto B. It may  targeting procedure is applied in order for the phase space
happen that, before reachirj the trajectory might evolve trajectory to go from the points, near the source poir to
about the peri_odic attractd®, until the moment _that noise the pointpy, near the targeting poiri. If we were dealing
sends the trajectory back to the fractal basin boundaryyth a simpler chaotic system, starting frdnthe only step
There, the trajectory is again a chaotic transient. This kind ofnat is necessary to get to the targeting pdintould be the
behavior may recur many times, until eventually the trajecyppjication of a small perturbation Bto move the state of
tory finally approaches the desired periodic attra®0rs0  the system to the poimis. Then, the natural chaotic evolu-
that the stabilizing strategy of Ref5] can now be used to  tjon of the system would guide the trajectory to the neigh-
keep the trajectory evolving about the desired state. In pragygrhood of the targeting poing; nearT. For our complex
tical situations, such transport time is prohibitively long. system, the situation is different. If we applied the same pro-
We find and show in this paper that this transport time cansaqyre, starting from the poil§ it is likely that the dynam-
be substantially reduced. As the transition between two difics would not take the trajectory to the targeting point. That

ferent metastable states implies a trajectory that undergoes,gid happen because of the additive noise that exists in our
chaotic transient evolution in between the states, we devisgstem. The noise, in combination with the deterministic

Fhe idea of usir!g a targeting method for .the complex dynar_nchaotic behavior of the map, implies a trajectory that is likely
ics. The targeting method exploits the inherent exponentigly deviate from the solely deterministic trajectory.
sensitivity of the chaotic time evolution to tiny perturbations T4 deal with this more complicated behavior, we use the
and our ability to choose the right perturbations to direCtygints from the deterministic trajectory obtained from the
trajectories to some desired accessible state in the Shortecﬁ'i'geting method, but “corrected” according to the follow-
possible time{22]. To apply this method, suppose that we jng procedure. Suppose that, starting fr§ithe determinis-

have two pointsSandT in the phase space of our complex ¢ trajectory is a sequence ofi points in the phase space
system, both of them in the fractal basin boundary. Con5|de(xs Xs Xs ), Wherexg is the perturbed poinps, and
1! 2! -y m L l 1

a small regiorr g about the source poir® and another small % is the point Starting from the “correctional”
regionr, about the target point. The objective is to find a "m P _pT' g ) PS’ _

point ps in r s so that it belongs to a trajectory that goes from procedure consists of the application of successive perturba-
ps to a pointpy in 1. To find ps, the regionr is iterated tions to compensate for the natur_all d_ewat!on of theisy)

in the forward direction, while the regian is iterated in the ~SYStem trajectory from the deterministic trajectory. Thus, for
backward direction, until these iterated regions intersect each*@mPple, if at iteration, the trajectory the system arrives at
other atp,, in the phase space. When the intersection ipositionx; that is different fromxsj, a perturbation is calcu-
found, there is a trajectory that goes from regigrio region  lated and applied to the system to take the trajectory fxpm

r+ through the intersectiop, . The pointps is then used to to the pomtxsj. Note that for our system this perturbation is
determine the value of the perturbation that must be appliedf the same order as the noise added at each iteration of the
to the system to bring it t@ps. As the system is ipg, it  map[see Eq(1)].

evolves following its own dynamics to get: in the shortest In Figs. 4 and 5 we show the application of our procedure.
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ability of the complex system to reach many different states,
combined with its sensitivity to small perturbations due to
the unstable chaotic set embedded in the random structure.
The procedure just described works for points located in
the random structure. The targeting methods, ours and the
previous ond22], work because of the inherent exponential
sensitivity of the chaotic time evolution to perturbations.
Therefore, the source poitand the targeting poinf must
both be in the same chaotic invariant set. This is the case for
pointsSandT in Figs. 4 and 5. However, if the system is
evolving in a metastable regime, where the trajectory can be
trapped for an arbitrarily long time, the condition of being
located in the same random structure is not satisfied. Further-
more, the time evolution is “ordered,” and the inherent ex-
ponential sensitivity to perturbations does not apply. Thus,
we show next that if the objective is to bring the trajectory
from one metastable state to any other metastable state, first

FIG. 4. () Phase space plot of a trajectory starting at the sourcdhe trajectory must be guided to the random chaotic region
pointS, and after letting the system to evolve by itself; it eventually Where the targeting method is applied. The idea thei ®
reaches the targeting poifitafter a large number of iterationd) ~ remove the trajectory from the metastable region to the sur-
This picture shows thg component of a trajectory in phase space rounding random structuréj) apply the targeting procedure
going from the source poir to the target poinf. It depicts then  in the random structure to bring it to the neighborhood of the
the angular velocity of the noisy kicked single rotor as a function desired metastable state and then finélly to bring it to the
of the iteration numbek. In both graphs, all quantities plotted are desired targeting point inside the metastable state. We ac-
dimensionless. complish this guidance task inside a metastable $tatand

(iii )] by using a traditional technique from the system control
Both the source poinG and the targeting poirif are in the ~theory and outside the metastable statasthe chaotic in-
fractal basin boundary. In Fig. 4, starting from the sourcevariant region (i) using the targeting procedure just de-
point, we leave the system evolving by itself, until it comesScribed. Thereby, our method of targeting different states in a
close to the targeting point. After 15118 iterations, the tra-COmplex system is a combination of a modifigd account
jectory visits a small region about the targefThis transport  for the effect of noispchaotic targeting with the traditional
time can be substantially reduced by applying our targetingontrol method. _
procedure. Our method, for this case, permits the target to be FOr the traditional part of the targeting procedure, we use
attained in 30 iterations, as can be seen in Fig. 5. Thus, wie discrete linear quadratic regulatofDLQR) [23]. We
achieve an improvement of three orders of magnitude in reconsider, for simplicity, the system evolving in a metastable
ducing the transport time, which is a very significant result State about, say, a fixed point'. Linearizing the system
It must be stressed that this result is a consequence of tibout this point gives the following equation:

. ) 1 L L
0 2000 4000 6000 8000 10000 12000 14000 16000
k

0 Xk+1= AX, (7)
SV X% X .
* *x W * whereA is DF(x*). To change the state of the system, we
20+ * ¥ Sx>® X% x * B . . .
. * x x * introduce an input term into Eq7) as
of Xk+l:AXk+Buk7 (8)
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whereu, is the vector of inputs an@ is a constant matrix
that states how the inputs influence the state of the system.
Our objective is to pickuy so that the “cost function”

J=3

EN (X QX+ U QU

9

is minimized.Q1 andQ2 are symmetric weighting matrices
to be selected, as we show next, based on the relative impor-
tance of the various states and controls. A particular weight

FIG. 5. By exploring the chaotic behavior of the system, ouriS almost always selected for the contrfg|#0), to avoid

targeting procedure rapidly steers the trajectory firo T. The

large components in the control gains. T@& must also be

asterisks that appear in the picture represent a trajectory obtained @n-negative.

applying our targeting procedure to drive the system from the point
Sto the pointT. (a) Phase space ploth) They component of this
trajectory as a function of. In both graphs, all quantities plotted

are dimensionless.

We solve this control problem by minimizing E) sub-
jected to the constraint E@8),

—Xgr1+AX+BU=0, k=0,1,...N. (10
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We use the method of Lagrange multipli¢2sf] to solve the
problem by introducing one Lagrange multiplier veckqr, 1

for each value ok. The minimization leads to the following

equations:
UkQ2+ N4 1B=0, (12)
— X4 1+ AX+Bu =0, (12
A=A 1+ QX 13

Combining Egs(10), (11), and(13) gives us a set of coupled

difference equations defining the optimal solutionxgfand
A and hence,, provided the initialor final) conditions are
known. The initial conditionsx, must be given; however,
usually g is not known, and we need the endpokjt to
establish the final condition. From E@®), we see thatiy is
zero for the minimund sinceuy has no effect oy [see Eq.
(10)]. Thus, Eqg.(11) suggests thaky,;=0, and Eq.(13)
thus shows that a suitable condition is

AN=Q1XN - (14

The solution to the optimal control problem is now com-
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(16), which givesS,, must be solved backward, with the
initial condition that appears in Eq20), plus the condition
KNZO.

This closed loop control strategy, when applied to a linear
system, has the effect of bringing this system from an arbi-
trary initial state to the zero state as quickly as possible.
After that, the system is held in the zero state, even in the
presence of noise. If the desired final state is insteadve
shift the origin. Letu; be the constant input signal to which
X; corresponds to the steady-state output. Themndx; are
related by

Xs=AX;+Bus. (21
We introduce now the state space variable
;(k:Xk_Xf . (22)

Then, with the aid of Eq(21), it follows from Eq.(8) thatx,
satisfies the equation

Xir 1= AX+BU, (23)

pletely specified. It consists of the two difference equationsyhere

Egs.(10) and(13), with u, given by Eq.(11), the final con-
dition on A\ given by Eq.(14), and the initial conditiornx,

ak:Uk_Uf. (24)

assumed to be given in the statement of the problem. Prob-

lems like thiS, where a set of Ol’dinary differential equations'rhis shows that the prob'em of bringing the Syst@)qfrom

or difference equations is required to satisfy boundary conan arbitrary initial state, to the final state; is equivalent to
ditions at more than one value of the independent variableyinging the systen(8) from the initial statex,—X; to the

are calledtwo point boundary value problem$he solution

to this two point boundary-value problem is not so easy. One

equilibrium statex, = 0.
In Figs. 6 and 7 we show the result of using the DLQR

way to solve this problem is proposed by Bryson and Homethod on the complex system. The system is initialy evolv-

[25], in which it is assumed that

A= SiXie (15

ing in a metastable state about a fixed point that exists when
there is no additive noise. This situation is represented in the
phase space plot, Fig. 6, by dots. Our initial goal is to steer

whereS, is an arbitrary matrix. Introducing this assumption the trajectory, say fron$to a neighborhood of the targeting

into Eq.(11), and after some work25], we get
S=A'My;1A+Qy, (16)
and
U= — KX, 17
where
Mis1=Sc 1~ S+1B(Q2+B'S(41B) "'B'S(11, (18)
and

Ki=(Q2+B'Sc;1B) " 'B'Sc11A. (19

pointT, as indicated in Fig. 6. Both poin&andT belongs to

the same metastable region, buts located near the sur-
rounding random structure. Frof, the trajectory can be
guided to evolve in the random structure by using a small
perturbation. Using the position df as reference, and lin-
earizing the system in the neighborhood of the fixed point,
we calculate the feedback gain that should be used so that the
DLQR can stabilize the trajectory evolution abdutWhen

the trajectory visits the point that is indicated in the figures
by S the DLQR controller is activated, using the previously
calculated feedback gain. The effect of applying this control-
ler can be seen in Fig. 6, where the controlled trajectory is
represented by circles. The controller changes the system'’s
dynamics so that, after a transient, it starts to evolve about

In these equations, the boundary condition on the recursivif! F19- 7, we represent the distance of the trajectory from the

relationship forS, is obtained from Eqs.14) and(15); thus
Sv=0Qz1- (20

targeting as a function df, starting from the instant when

the DLQR is applied. We can see in this figure that the
controller brings the trajectory very near the targeting point
T, as desired. However, after evolving for some time about

K is the desired time-varying feedback gain. Note that theT, the trajectory moves progressively away from it. This hap-
gain Ky changes for each step but can be precomputed angens because of the combined effects due to nonlinearity and

stored for later use as long as the lenbtlof the problem is
known. Note that no knowledge of the initial statg is
required for computation of the control gafty, and the Eq.

noise. This progressive deviation from the desired state is
more intense as the distance of the desired final state from
the point that was used for the linearization increases.
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( Metastable Regime B )
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36.51
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~ FIG. 6. The effect of using the DLQR. The system was evolving ¢ g, Schematic representation of our complete targeting pro-

in a metastable state, represented by dots in the phase space. Whenyre for complex systems. The system is initially evolving in the

itis in the positionS, represented by & in the graph, the DLQR  atagtable regima. Our goal is to steer it to metastable regifie

was ap_phed. The effect of using this controller is show_n with C"CleSStarting from a generic pointy, in A, the DLQR procedure drives

in the figure. The control changes the sys_tem dynamlcs SO th_at thee trajectory insideA to a pointx,, Nearx,. In X,r, a small

system passes to evolve about the targeting poimépresented in - ot rhation is applied, and the system moves to the state

the graph by an asterisk. All quantities plotted are dimensionless. another perturbation is applied, and the system moves to the state
Xsa- Our modified chaotic targeting procedure is then used to stir

The behavior of the system under the action of the DLQRthe system tc, . Another small perturbation drives the system to
however, is precisely what we need to take the system evdhe pointx,,, where the procedure of Réb] stabilizes the system
lution out of a metastable state into the random structure i the metastable regim@.
order to drive the system’s trajectory toward another specific
metastable state. Thus, suppose the system is in a metastaBleQR and immediately apply a small perturbation to drive
state and we wish to stir its dynamics out of this state to dhe system to;. Then, another perturbation takes the sys-
random structure. We first identify in the state space thdem fromx; to the neighboring random structure as desired.
point x; inside the metastable region, the region where thdn fact, it is sufficient to give a single perturbation to take the
system is currently evolving, but ag very near the random system fromxfn to the random structure and, thus, bypassing
structure. Then, we apply the DLQR, considerxigas the  the pointx; altogether.
desired final state. When the trajectory is in the point Putting all these ideas together, imagine now that our goal
which is located close enough tq, we cease to use the is to stir the system from a state in the metastable regime

to a state in the metastable regiBe as shown in Fig. 8.

0.45 , , , : , , , . , Using the combined targeting procedure, we first calculate a
trajectory in the state space that takes the pwrigtear the
metastable regimé to a pointx;, near the metastable re-
gime B. X4, is chosen so that there is a poigt, inside A so
that a small perturbation is enough to drive the system from
X¢a 10 Xg5. AlSO, Xy i chosen in the random structure so that
a small perturbation is enough to drive the system frgrio
a pointXx,y, in B. Starting from a point iM, say, the point
Xofa» the DLQR procedure drives the trajectory insiéo a
point X, Nearxs, . At X1, @ small perturbation is applied,
and the system instantaneously moves to the sigte An-
other perturbation is applied, and the system instantaneously
moves to the statg;,. Our modified chaotic targeting pro-
cedure is then used to stir the systenmx{p. Another small
perturbation instantaneously drives the system to the point
Xob, Where the procedure of Rd6] stabilizes the system in
the metastable regimg.

FIG. 7. This plot shows the distance of the DLQR controlled  Relevant questions about our procedure &t how
trajectory from the target as function & When the controlled ~Should the points;, andxs,, as shown in Fig. 8, be chosen;
trajectory comes near enough to the target, the application of DLQRIN (2) what is the small perturbation that can move the
can be stopped and a small perturbation is enough to send the traystem from one point to the other? This selection is made
jectory to the random structure. All quantities plotted are dimen-by using a procedur§26] used to find an acessible point
sionless. [24]. The metastable state evolves about a periodic attractor
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FIG. 9. Controlling the evolution of the complex system using a x
combination of our modified chaotic targeting method with standard

L?;Eggngnfé?emmig?t;g ;hfi(r)wrc)go-r:h;i:npﬂgg d\./eTlﬂgtgo?r:ﬂ.tk;g dEOISy te_m using a combin{_;\tion of our modified chaotic targeting method
cates the position where we start to control the system. Using ouvr\”th standard targ(_etlng frgm contrql theory. The metastable statgs
procedure, we drive the system through the metastable states t vgpere the SVSte”.‘ IS St‘?‘b'“zed are indicated in the plot. All quanti-
are indicated in the graph. The metastable regimes are identifyir:}gIes plotted are dimensionless.

by small letters, while the point where the targeting procedure is

applied for the first time is indicated by the letfer All quantities

plotted are dimensionless.

FIG. 10. Phase space plot of the evolution of the complex sys-

by a targeting procedure, and the trajectory is stirred to the
neighborhood of another metastable state. The same proce-
dure is again applied to move the system now to a period two
for the deterministic dynamics. The basin boundary of thignetastable state, where it is stabilized. After while, the pro-
periodic attractor permeates most of the state space, exceptdure is applied to return the system to a previous meta-
for a small open neighborhood about the periodic attractorstable regime. The perturbations that is applied during the
as can be seen in F|g 2. Then, points in this open neighboWhOle manipulation is less than 0.1. We note the extremely
hood remains close to the periodic attractor, while points thaghort transient in between the various controlled metastable
are located outside undergo a chaotic transient, and event§tates.

ally go to the neighborhood of other periodic attractors. To

find X;, andxg,, we first find a poin,,, between both that IV. CONCLUSION

is on the boundary but acessible from the basin of the peri- . . . . .
odic attractor. A p)(/Jint on the boundary is accessible if ﬁ is Th_e control m_ethod discussed in this a_rtlcle combln_es
possible to connect this point to the attractor using a curve Opchnl?ues usle? n ﬁyst(_am control t@riory W'tlh tr;eht_argetmg
inside this open neighborhood region about the periodic atfime evolution of a complex svstem as degire{i Hovx?ever
tractor, and the other outside, respectively. The pBinap- P y ' '

proaches the attractor asymptotically while the péiptdoes nmec;:le ?;réiju;t fa(1) f%n;ﬁl m;;zOdér%hgémfoﬁf ptrhoepgsggr;?s?
not. Take the middle point betwed?, and P, and call it P g P 9 g Y

i . ! . dynamics. It is a combination of chaos control, control sys-
P . Check then whethd?,, is an inside or outside point. If : : : ! )
P is inside, we discard®, and takeP,, as the new, . tem strategies using small perturbation, and the standard con

. . trol approach.
Othervy|se, we discar®, and takePp, as the neV‘PO‘ By The efficacy of this proposed paradigm is demonstrated
repeating this procedure we can get two poiRtsand P, b

that ¢ h oth ish. th N using it in a complex system. A complex system, with its
atare asaear _ote?/(\:/ (t)h eras we thﬁ ' usmzoomlng nQ mplicated and intricate dynamics, intrinsic sensitivity, and
an accessible point. We then rename Ihe resuringsxsa , coexistence of states with different behavior, provides an
andP, asXs,. In the presence of the ad_dmve NOISE, the SaM&yeal scenario to be explored by our paradigm. However, we
ptrocgdure can be used, with E() being considered in- expect that it can be used with the same efficacy in the con-
S ela F 9 and 10 h h its of Vi trol of other nonlinear systems where complicated dynamics
n rigs. 9 an we show the results of applying OUrq.q ., For these systems, a mechanism that switches the dy-
combined method to change the system evolution at wil

. ) namics between chaos and regular motion can be used to
be;ween desired metastable states. We follow a typical nois rovide the perfect scenario for the use of our paradigm.
trajectory for more than 1000 iterations. Then, we apply ou
combined targeting procedure to drive the trajectory to This work was supported by the CNPBrazilian Agency
evolve about a periodic attractor. The R&f] method is then for Research and Technological Developmenand
used and the trajectory is stabilized in this metastable reNSF/CNPq joint research grant. E. M. thanks Drs. Leon
gime. After some iterations, the DLQR is applied, followed Poon and Ricardo Viana for helpful discussions.
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